Search results for "Landis conjecture"

showing 2 items of 2 documents

Landis-type conjecture for the half-Laplacian

2023

In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation decays at a certain exponential rate, then it must be trivial. The main ingredients of our proof are the Caffarelli-Silvestre extension and Armitage’s Liouville-type theorem. peerReviewed

Landis conjecture half-Laplacian Caarelli- Silvestre extension Liouville-type theoremosittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsApplied MathematicsGeneral Mathematicsunique continuation propertyPrimary: 35A02 35B40 35R11. Secondary: 35J05 35J15FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

On the Landis conjecture for the fractional Schrödinger equation

2023

In this paper, we study a Landis-type conjecture for the general fractional Schrödinger equation ((−P)s+q)u=0. As a byproduct, we also prove the additivity and boundedness of the linear operator (−P)s for non-smooth coefficents. For differentiable potentials q, if a solution decays at a rate exp (−∣x∣1+), then the solution vanishes identically. For non-differentiable potentials q, if a solution decays at a rate exp (−∣x∣4s−14s+), then the solution must again be trivial. The proof relies on delicate Carleman estimates. This study is an extension of the work by Rüland and Wang (2019). peerReviewed

fractional Schrödinger equationLandis conjectureunique continuation at infinityStatistical and Nonlinear PhysicsGeometry and TopologyMathematical PhysicsJournal of Spectral Theory
researchProduct